The general solution of the equation $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ is
$2n\pi \pm \frac{\pi }{4} + \frac{\pi }{{12}}$
$n\pi + {( - 1)^n}\frac{\pi }{4} + \frac{\pi }{{12}}$
$2n\pi \pm \frac{\pi }{4} - \frac{\pi }{{12}}$
$n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{{12}}$
The general solution of $\tan 3x = 1$ is
If $\sqrt 3 \cos \,\theta + \sin \theta = \sqrt 2 ,$ then the most general value of $\theta $ is
The value of the expression
$\frac{{\left (sin 36^o + cos 36^o - \sqrt 2 sin 27^o)( {\sin {{36}^0} + \cos {{36}^0} - \sqrt 2 \sin {{27}^0}} \right)}}{{2\sin {{54}^0}}}$ is less than
General value of $\theta $ satisfying the equation ${\tan ^2}\theta + \sec 2\theta - = 1$ is
If $(1 + \tan \theta )(1 + \tan \phi ) = 2$, then $\theta + \phi =$ ....$^o$