The general solution of the equation $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ is
$2n\pi \pm \frac{\pi }{4} + \frac{\pi }{{12}}$
$n\pi + {( - 1)^n}\frac{\pi }{4} + \frac{\pi }{{12}}$
$2n\pi \pm \frac{\pi }{4} - \frac{\pi }{{12}}$
$n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{{12}}$
Number of solution $(s)$ of the equation ${\cos ^2}2x + {\cos ^2}\frac{{5x}}{4} = \cos 2x\,{\cos ^2}5x$ in $\left[ {0,\frac{\pi }{3}} \right]$ is
General solution of $eq^n\, 2tan\theta \, -\, cot\theta =\, -1$ is
Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.
Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to
The number of distinct solutions of $\sec \theta \,\, + \,\,\tan \theta \, = \,\sqrt 3 \,,\,0\,\, \leqslant \,\,\theta \,\, \leqslant \,\,2\pi$
If $sin\, \theta = sin\, \alpha$ then $sin\, \frac{\theta }{3}$ =