સમીકરણ $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ નો વ્યાપક ઉકેલ મેળવો.
$2n\pi \pm \frac{\pi }{4} + \frac{\pi }{{12}}$
$n\pi + {( - 1)^n}\frac{\pi }{4} + \frac{\pi }{{12}}$
$2n\pi \pm \frac{\pi }{4} - \frac{\pi }{{12}}$
$n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{{12}}$
સમીકરણ $\sin \theta = \sin \alpha $ અને $\cos \theta = \cos \alpha $ નું સમાધાન કરે તેવો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $\sin ^{7} x+\cos ^{7}=1, x \in[0,4 \pi]$ ના ઉકેલની સંખ્યા મેળવો.
$-4 \pi \leq x \leq 4 \pi$ માટે $|\cos x|=\sin x$ ના ઉકેલની સંખ્યા મેળવો.
જો $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in [0,2 \pi ]$ થાય તો $x$ ની મહતમ પૂર્ણાક કિમત મેળવો.
આપેલ સમીકરણના મુખ્ય અને વ્યાપક ઉકેલ શોધો : $\cot x=-\sqrt{3}$