समीकरण $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ के अंतराल $[0, 2\pi]$ में हलों की संख्या निम्न है
$0$
$1$
$2$
$3$
समीकरण $\tan \theta + \sec \theta = \sqrt 3 ,$ जहाँ $0 < \theta < 2\pi $ के हलों की संख्या है
समीकरण, $\sin ^{7} x +\cos ^{7} x =1$ के $x \in[0,4 \pi]$ में हलों की संख्या है -
यदि $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, तो $\theta $ का व्यापक मान है
समीकरण $\sin \left(\pi \sin ^2(\theta)\right)+\sin \left(\pi \cos ^2(\theta)\right)=2 \cos \left(\frac{\pi}{2} \cos (\theta)\right)$ के हलों की कुल संख्या जो $0 \leq \theta \leq 2 \pi$ को संतुष्ट करती है निम्न है।
यदि $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $, तो $\theta $ के व्यापक मान है