For which value of $x$ ; $cosx > sinx,$ where $x\, \in \,\,\left( {\frac{\pi }{2}\,,\,\frac{{3\pi }}{2}} \right)$
$\left( {\frac{{\pi }}{2}\,,\,\frac{{5\pi }}{4}} \right]$
$\left( {\frac{\pi }{2}\,,\,\pi } \right]$
$\left( {\frac{{5\pi }}{4}\,,\,\frac{{3\pi }}{2}} \right)$
None
The value of the expression
$\frac{{\left (sin 36^o + cos 36^o - \sqrt 2 sin 27^o)( {\sin {{36}^0} + \cos {{36}^0} - \sqrt 2 \sin {{27}^0}} \right)}}{{2\sin {{54}^0}}}$ is less than
The sum of all values of $x$ in $[0,2 \pi]$, for which $\sin x+\sin 2 x+\sin 3 x+\sin 4 x=0$, is equal to:
If $5{\cos ^2}\theta + 7{\sin ^2}\theta - 6 = 0$, then the general value of $\theta $ is
The solution set of $(5 + 4\cos \theta )(2\cos \theta + 1) = 0$ in the interval $[0,\,\,2\pi ]$ is
The number of pairs $(x, y)$ satisfying the equations $\sin x + \sin y = \sin (x + y)$ and $|x| + |y| = 1$ is