For which value of $x$ ; $cosx > sinx,$ where $x\, \in \,\,\left( {\frac{\pi }{2}\,,\,\frac{{3\pi }}{2}} \right)$
$\left( {\frac{{\pi }}{2}\,,\,\frac{{5\pi }}{4}} \right]$
$\left( {\frac{\pi }{2}\,,\,\pi } \right]$
$\left( {\frac{{5\pi }}{4}\,,\,\frac{{3\pi }}{2}} \right)$
None
The number of distinct solutions of the equation $\frac{5}{4} \cos ^2 2 x+\cos ^4 x+\sin ^4 x+\cos ^6 x+\sin ^6 x=2$ in the interval $[0,2 \pi]$ is
The roots of the equation $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ is
If $\cos \theta = \frac{{ - 1}}{2}$ and ${0^o} < \theta < {360^o}$, then the values of $\theta $ are
The general value of $\theta $ that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in I)$
The smallest positive angle which satisfies the equation $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$, is