The sum of all $x \in[0, \pi]$ which satisfy the equation $\sin x+\frac{1}{2} \cos x=\sin ^2\left(x+\frac{\pi}{4}\right)$ is

  • [KVPY 2012]
  • A

    $\frac{\pi}{6}$

  • B

    $\frac{5 \pi}{6}$

  • C

    $\pi$

  • D

    $2 \pi$

Similar Questions

If $\tan (\cot x) = \cot (\tan x),$ then $\sin 2x =$

The number of values of $x$ in the interval $[0, 5 \pi  ] $ satisfying the equation $3{\sin ^2}x - 7\sin x + 2 = 0$ is

  • [IIT 1998]

If $1 + \cot \theta = {\rm{cosec}}\theta $, then the general value of $\theta $ is

Let $f(x) = \cos \sqrt {x,} $ then which of the following is true

If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then