The sum of the solutions in $x \in (0,4\pi )$ of the equation $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi + x}}{3}} \right) = 1$ is
$6\pi $
$4\pi $
$3\pi $
None of these
Let $S=\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$. Then the number of elements in the set $=\{\theta \in S : \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ is $...$
The number of solutions of the equation $1 + {\sin ^4}\,x = {\cos ^2}\,3x,x\,\in \,\left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right]$ is
Find the general solution of $\cos ec\, x=-2$
The equation $5x^2+12x + 13 = 0$ and $ax^2+bx + c = 0$ have a common root, where $a,b,c$ are the sides of $\Delta ABC$,then find $\angle C$ ? .....$^o$
Let $S=\left\{\theta \in[-\pi, \pi]-\left\{\pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\} \text {. }$ If $T =\sum_{\theta \in S } \cos 2 \theta$, then $T + n ( S )$ is equal