दीर्घवृत्त $x^{2}+4 y^{2}=4$ निर्देशक अक्षों से सरंखित एक आयत के अन्तर्गत है जो स्वयं बिन्दु $(4,0)$ से जाने वाले दूसरे दीर्घवृत्त के अन्तर्गत है। तब इस दीर्घवृत्त का समीकरण है
$\;{x^2} + 12{y^2} = 16$
$\;4{x^2} + 48{y^2} = 48$
$\;4{x^2} + 64{y^2} = 48$
$\;{x^2} + 16{y^2} = 16$
एक दीर्घवृत्त, जिसका लघु एवं वृहद अक्ष निर्देशक अक्षों $(coordinate\,axes)$ के समान्तर है, $(0,0),(1,0)$ एवं $(0,2)$ से गुजरता है। इसकी एक नाभि $y$-अक्ष पर है। दीर्घवृत्त का उत्केन्द्रता है ?
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की कोई स्पर्श रेखा अक्षों पर $h$ व $k$ लम्बाई के अन्त: खण्ड काटती है, तो $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = $
माना दीर्घवत्त $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ पद दूसरे चतुर्थाश में एक बिंदु $P$ इस प्रकार है कि $P$ पर दीर्घवत की स्पर्श रेखा, रेखा $x +2 y =0$ के लंबवत हैं। माना दीर्घवत्त की नाभियों $S$ तथा $S^{\prime}$ है तथा इसकी उत्केन्द्रता $e$ है। यदि त्रिभुज SPS' का क्षेत्रफल $A$ है तो $\left(5- e ^{2}\right) . A$ का मान है
दीर्घवृत्त $3{x^2} + 2{y^2} = 5$ पर बिन्दु $(1, 2)$ से डाली गयी स्पशियों के बीच का कोण होगा
यदि रेखा $y = 2x + c$ दीर्घवृत्त $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$ को स्पर्श करती है, तो $c = $