यदि रेखा $y = 2x + c$ दीर्घवृत्त $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$ को स्पर्श करती है, तो $c = $
$ \pm 4$
$ \pm 6$
$ \pm 1$
$ \pm 8$
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ के बीच की दूरी $8$ एवं नियताओं के बीच की दूरी $18$ है, होगा
यदि दीर्घवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1$, रेखा $\frac{ x }{7}+\frac{ y }{2 \sqrt{6}}=1$ को $x$-अक्ष पर तथा रेखा $\frac{ x }{7}-\frac{ y }{2 \sqrt{6}}=1$ को $y$-अक्ष पर मिलता है, तो दीर्घवृत्त की उत्केन्द्रता है।
माना एक दीर्घवृत्त, जिसका दीर्घ-अक्ष $X$-अक्ष के अनुदिश है तथा केंद्र मूलबिन्दु पर है, के नाभिलम्ब की लंबाई $8$ है। यदि दीर्घवृत्त की नाभियों के बीच की दूरी, इसके लघु-अक्ष की लंबाई के समान हो, तो निम्न में से कौन-सा बिन्दु इस पर स्थित है ?
दीर्घवृत्त $9{x^2} + 5{y^2} = 45$ के बिन्दु $ (0, 3)$ पर अभिलम्ब का समीकरण है
यदि दीर्घवृत्त $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की नाभियाँ व अतिपरवलय $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ की नाभियाँ सम्पाती हों तो ${b^2}$ का मान है