फलन $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ का डोमेन (प्रान्त) है
$[1, 4]$
$[-4, 1]$
$[-1, 4]$
इनमें से कोई नहीं
यदि फलन $f(x)=\log _e\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right) $ का प्रांत $(\alpha, \beta]$ है, तो $5 \beta-4 \alpha$ का मान बराबर है
फलन $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, जहाँ $p > 0,\;q > 0,\;r > 0$ का केवल एक बिन्दु पर निम्निष्ठ मान होगा यदि
फलन $f(x)=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+x\right)+\cos \left(\frac{\pi}{4}+x\right)+\cos \left(\frac{\pi}{4}-x\right)$
$-\cos \left(\frac{3 \pi}{4}-x\right))$ का परिसर है
फलन $f(x)=\frac{\cos ^{-1}\left(\frac{x^2-5 x+6}{x^2-9}\right)}{\log _e\left(x^2-3 x+2\right)}$ का प्रांत है
$b$ व $c$ के वे मान जो कि सर्वसमिका $f(x + 1) - f(x) = 8x + 3$ को संतुष्ट करते है , जहा $f(x) = b{x^2} + cx + d$, है