The domain of the function $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ is

  • A

    $[1, 4]$

  • B

    $[-4, 1]$

  • C

    $[-1, 4]$

  • D

    None of these

Similar Questions

Consider a function $f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$ given by $f(x)=\sin x$ and $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$ given by $g(x)=\cos x .$ Show that $f$ and $g$ are one-one, but $f\,+\,g$ is not one-one.

If a function $g(x)$ is defined in $[-1, 1]$ and two vertices of an equilateral triangle are $(0, 0)$ and $(x, g(x))$ and its area is $\frac{\sqrt 3}{4}$ , then $g(x)$ equals :-

Let $f (x) = a^x (a > 0)$ be written as $f( x) = f_1( x) + f_2( x)$ , where $f_1( x)$ is an even function and $f_2( x)$ is an odd function. Then $f_1( x + y) + f_1( x - y )$ equals

  • [JEE MAIN 2019]

Let $S=\{1,2,3,4,5,6\}$. Then the number of oneone functions $f: S \rightarrow P(S)$, where $P(S)$ denote the power set of $S$, such that $f(n) \subset f(m)$ where $n < m$ is $..................$

  • [JEE MAIN 2023]

Prove that the Greatest Integer Function $f: R \rightarrow R ,$ given by $f(x)=[x]$, is neither one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to $x$.