${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ નો પ્રદેશ મેળવો.

  • [AIEEE 2002]
  • A

    $[1, 9]$

  • B

    $[-1, 9]$

  • C

    $[-9, 1]$

  • D

    $[-9, -1]$

Similar Questions

અહી વિધેય $\mathrm{f}: N \rightarrow N$ આપેલ છે કે જેથી દરેક $\mathrm{m}, \mathrm{n} \in N$ માટે  $\mathrm{f}(\mathrm{m}+\mathrm{n})=\mathrm{f}(\mathrm{m})+\mathrm{f}(\mathrm{n})$ થાય. જો  $\mathrm{f}(6)=18$ હોય તો  $\mathrm{f}(2) \cdot \mathrm{f}(3)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $f\ (x)$ વિધેય દરેક $x, y, \in  N$ માટે $f\ (x + y) = f(x) f(y)$ ને સંતોષે જેથી $f(1) = 3$ અને $\sum\limits_{x\, = \,1}^n {{{f}}(x)} \, = \,120$ થાય. તો $n$ નું મૂલ્ય કેટલું થાય?

ધારો કે $f:(1,3) \rightarrow \mathrm{R}$ એ $f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ મુજબ વિધેય વ્યાખ્યાતિ છે કે જ્યાં $[\mathrm{x}]$ એ મહતમ પૃણાંક વિધેય છે તો વિધેય $f$ નો વિસ્તાર મેળવો.

  • [JEE MAIN 2020]

જો $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, તો $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ મળે.

સાબિત કરો કે વિધેય $f : R \rightarrow\{ x \in R :-1< x <1\}$, $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$, એક-એક અને વ્યાપ્ત વિધેય છે.