જો $f(x) = \cos (\log x)$, તો $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $

  • [IIT 1983]
  • A

    $ - 1$

  • B

    $\frac{1}{2}$

  • C

    $ - 2$

  • D

    એકપણ નહી.

Similar Questions

$f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ નો પ્રદેશગણ મેળવો.

ધારો કે $f:[2,\;2] \to R$ ; $f(x) = \left\{ \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\; - 2 \le x \le 0\\x - 1\;\;\;\;\;{\rm{for}}\;0 \le x \le 2\end{array} \right.$, તો $\{ x \in ( - 2,\;2):x \le 0$ અને $f(|x|) = x\} = $

વિધેય $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ નો પ્રદેશ મેળવો.

  • [JEE MAIN 2019]

જો $\phi (x) = (x) + {2^{\log _x^3}} - {3^{\log _x^2}}$ હોય તો 

ધારો કે  $f : R \rightarrow R$ એ સતત વિધેય છે કે જેથી $f(3 x)-f(x)=x$ છે જો $f(8)=7$ હોય તો  $f(14)$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]