निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
$6,7,10,12,13,4,8,12$
$6,7,10,12,13,4,8,12$
Mean, $\bar x = \frac{{\sum\limits_{i = 1}^8 {{x_i}} }}{n}$
$=\frac{6+7+10+12+13+4+8+12}{8}=\frac{72}{8}=9$
The following table is obtained
${x_i}$ | $\left( {{x_i} - \bar x} \right)$ | ${\left( {{x_i} - \bar x} \right)^2}$ |
$6$ | $-3$ | $9$ |
$7$ | $-2$ | $4$ |
$10$ | $-1$ | $1$ |
$12$ | $3$ | $9$ |
$13$ | $4$ | $16$ |
$4$ | $-5$ | $25$ |
$8$ | $-1$ | $1$ |
$12$ | $3$ | $9$ |
$74$ |
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^8 {{{\left( {{x_i} - \bar x} \right)}^2} = \frac{1}{8} \times 74} = 9.25$
माना $X=\{x \in N : 1 \leq x \leq 17\}$ और $Y=\{a x+b: x \in X$ और $a, b \in R , a>0\}$ यदि $Y$ के अवयव का माध्य और प्रसरण क्रमश $17$ और $216$ है तो $a+b$ बराबर है
पाँच प्रेक्षणों का माध्य $4$ है तथा इनका प्रसरण $5.2$ है। यदि इन प्रेक्षणों में से तीन $1, 2$ तथा $6$ है, तब अन्य दो प्रेक्षण हैं
$25$ संख्याओं का मानक विचलन $40$ है। यदि प्रत्येक संख्या को $5$ बढ़ाया गया है, तब नया मानक विचलन होगा
निम्नलिखित आँकड़ों के लिए प्रसरण व मानक विचलन ज्ञात कीजिए
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
प्रथम $n$ प्राकृत संख्याओं का प्रसरण है