निम्नलिखित बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।

वर्ग $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
बारंबारता $5$ $8$ $15$ $16$ $6$

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Class Frequency ${f_i}$ Mid-point ${x_i}$ ${y_i} = \frac{{{x_i} - 25}}{{10}}$ ${y_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$0-10$ $5$ $5$ $-2$ $4$ $-10$ $20$
$10-20$ $8$ $15$ $-1$ $1$ $-8$ $8$
$20-30$ $15$ $25$ $0$ $0$ $0$ $0$
$30-40$ $16$ $35$ $1$ $1$ $16$ $16$
$40-50$ $6$ $45$ $2$ $4$ $12$ $24$
  $50$       $10$ $68$

Mean, $\bar x = A + \frac{{\sum\limits_{i = 1}^5 {{f_i}{y_i}} }}{N} \times h$

$ = 25 + \frac{{10}}{{50}} \times 10 = 25 + 2 = 27$

Variance, $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^5 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^5 {{f_i}{y_i}} } \right)}^2}} } \right]$

$=\frac{(10)^{2}}{(50)^{2}}\left[50 \times 68-(10)^{2}\right]$

$=\frac{1}{25}[3400-100]=\frac{3300}{25}$

$=132$

Similar Questions

यदि पाँच प्रे क्षणों $x _{1}, x _{2}, x _{3}, x _{4}, x _{5}$ का माध्य तथा मानक विचलन क्रमशः $10$ तथा $3$ हो, तो छः प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{5}$ तथा $-50$ का प्रसरण होगा-

  • [JEE MAIN 2019]

माना एक चर $x$ द्वारा लिये गये मान इस प्रकार हैं, कि $a \le {x_i} \le b$ जहाँ ${x_i}$, $i = 1,2, …. n$ के लिये $i$ वीं स्थिति में $x$ का मान प्रदर्शित करता है

$40$ प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः $30$ तथा $5$ हैं। यह पाया गया कि इनमें से दो प्रेक्षण $12$ तथा $10$ गलती से लिखे गए। यदि गलती से लिखे दो प्रेक्षणों को हटाने के पश्चात् शेष आकड़ों का मानक विचलन $\sigma$ है, तो $38 \sigma^2$ बराबर है $...........$

  • [JEE MAIN 2022]

माना $6$ प्रेक्षणों $\mathrm{a}, \mathrm{b}, 68,44,48,60$ के माध्य तथा प्रसरण क्रमशः $55$ तथा $194$ हैं। यदि $\mathrm{a}>\mathrm{b}$ है। तो $\mathrm{a}+3 \mathrm{~b}$ बराबर है

  • [JEE MAIN 2024]

निम्नलिखित आँकड़ों के लिए प्रसरण व मानक विचलन ज्ञात कीजिए

${x_i}$ $4$ $8$ $11$ $17$ $20$ $24$ $32$
${f_i}$ $3$ $5$ $9$ $5$ $4$ $3$ $1$