आंकडों

$x_i$ $0$ $1$ $5$ $6$ $10$ $12$ $17$
$f_i$ $3$ $2$ $3$ $2$ $6$ $3$ $3$

का प्रसरण $\sigma^2$ बराबर है ..........

  • [JEE MAIN 2024]
  • A

    $28$

  • B

    $29$

  • C

    $27$

  • D

    $25$

Similar Questions

$7$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं। यदि पाँच क्रमशः प्रेक्षण $2,4,10,12,14$ हैं, तो शेष दो प्रेक्षणों का निरपेक्ष अंतर है

  • [JEE MAIN 2020]

किसी समूह के प्रेक्षणों ${x_1},\,{x_2},\,.....{x_n}$ के लिये परिसर $r$ तथा मानक विचलन ${S^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}} $ हैं, तब

 

यदि $\sum_{i=1}^{9}\left(x_{i}-5\right)=9$ तथा $\sum_{i=1}^{9}\left(x_{i}-5\right)^{2}=45$ है, तो नौ प्रेक्षणों $x_{1}, x_{2}, \ldots . ., x_{9}$ का मानक विचलन है

  • [JEE MAIN 2018]

यदि निम्न बारंबारता बंटन :का प्रसरण $50$ है, तो $x$ का मान है |

वर्ग $10-20$ $20-30$ $30-40$
बारंबारता $2$ $x$ $2$

  • [JEE MAIN 2020]

नीचे दी गई प्रेक्षणों के दो समूहों की सांख्यिकी का विचार कीजिए 

  आकार माध्य  प्रसरण 
प्रेक्षण $I$ $10$ $2$ $2$
 प्रेक्षण $II$ $n$ $3$ $1$

यदि इन दोनों प्रेक्षणों को मिलाकर बने समूह का प्रसरण $\frac{17}{9}$ है, तो $n$ का मान बराबर है

  • [JEE MAIN 2021]