અભિવ્યક્તિ $(5+x)^{500}+x(5+x)^{499}+x^{2}(5+x)^{498}+\ldots . x^{500}$ $x>0$ માં $x ^{101}$ નો સહુગુણક ......... છે.
${ }^{501} C _{101}(5)^{399}$
${ }^{501} C _{101}(5)^{400}$
${ }^{501} C _{100}(5)^{400}$
${ }^{500} C _{101}(5)^{399}$
$(x - 1)^2(x - 2)^3(x - 3)^4(x - 4)^5 .... (x - 10)^{11}$ ના વિસ્તરણમાં $x^{64}$ નો સહગુણક મેળવો
${(1 + x - 3{x^2})^{2134}}$ ના સહગુણકનો સરવાળો મેળવો.
$(1 + x + x^2 + x^3 +.... + x^{100})^3$ ના વિસ્તરણમાં $x^{100}$ નો સહગુણક મેળવો
જો ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ ના સહગુણકનો સરવાળો શૂન્ય હોય તો $\alpha $ મેળવો.
ધારોકે $\left(a+b x+c x^2\right)^{10}=\sum \limits_{i=0}^{20} p_i x^i a, b, c \in N$ જો $p_1=20$ અને $p_2=210$ હીય, તો $2(a+b+c)=.......$