व्यंजक $(5+x)^{500}+x(5+x)^{499}+x^2(5+x)^{498}+\ldots . x^{500}$ $x > 0$ में $x ^{101}$ का गुणांक होगा -
${ }^{501} C _{101}(5)^{399}$
${ }^{501} C _{101}(5)^{400}$
${ }^{501} C _{100}(5)^{400}$
${ }^{500} C _{101}(5)^{399}$
माना $(1+ x )^{ n }$ के प्रसार में $x ^{ r }$ का द्विपद गुणांक ${ }^{ n } C _{ r }$ है। यदि $\sum_{ k =0}^{10}\left(2^{2}+3 k \right)= C _{ k }=\alpha .3^{10}+\beta .2^{10}, \alpha$, $\beta \in R$ है, $\alpha+\beta$ बराबर है ............ |
यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, तब ${C_0} + {C_2} + {C_4} + {C_6} + .....$ का मान होगा
$\sum_{\mathrm{r}=0}^{22}{ }^{22} \mathrm{C}_{\mathrm{r}}{ }^{23} \mathrm{C}_{\mathrm{r}}$ का मान है
$(1+x)^{101}\left(1+x^{2}-x\right)^{100}$ के $x$ की घातों में प्रसार में पदों की संख्या है
यदि $1+\left(2+{ }^{49} C _1+{ }^{49} C _2+\ldots \ldots+{ }^{49} C _{49}\right)\left({ }^{50} C _2+\right.$ $\left.{ }^{50} C _4+\ldots . .+{ }^{50} C _{50}\right)=2^{ n } . m$ है, जहाँ $m$ एक विषम संख्या है, तो $n + m$ बराबर है $..........$