$ax \pm by \pm c = 0$ से बने समान्तर चतुभ्र्ज का क्षेत्रफल है
$\frac{{{c^2}}}{{ab}}$
$\frac{{2{c^2}}}{{ab}}$
$\frac{{{c^2}}}{{2ab}}$
इनमें से कोई नहीं
मान लीजिए $O=(0,0) ; x$ - एवं $y$-अक्ष पर दो बिंदु क्रमशः $A$ and $B$ ऐसे हैं कि $\angle O B A=60^{\circ}$ है. मान लीजिए कि बिंदु $D$ पहले चतुर्थाश $(quadrant)$ में इस प्रकार है कि $O A D$ एक समबाहु त्रिभुज है. $D B$ की प्रबणता क्या होगी ?
यदि एक समांतर चतुर्भु ज $ABDC$ के बिन्दुओं $A , B$ तथा $C$ के निर्देशांक क्रमशः $(1,2),(3,4)$ तथा $(2,5)$ हैं, तो विकर्ण $AD$ का समीकरण है
यदि $A \,(2, 5),\, B \,(4, -11)$ तथा $C$, रेखा $9x + 7y + 4 = 0$ पर स्थित हैं, तब त्रिभुज $ABC$ के केन्द्रक का बिन्दुपथ एक सरल रेखा है जो निम्न में से किस सरल रेखा के समान्तर है
त्रिभुज, जिसके शीर्ष $P(2,\;2),\;Q(6,\; - \;1)$ व $R(7,\;3)$ हैं, की माध्यिका $PS$ है। बिन्दु $(1, -1)$ से जाने वाली तथा माध्यिका $PS$ के समान्तर रेखा का समीकरण है
एक समद्विबाहु त्रिभुज की दो बराबर भुजाओं के समीकरण $7x - y + 3 = 0$ तथा $x + y - 3 = 0$ हैं और तीसरी भुजा बिन्दु $(1, -10)$ से गुजरती है। तीसरी भुजा का समीकरण है