मान लीजिए $O=(0,0) ; x$ - एवं $y$-अक्ष पर दो बिंदु क्रमशः $A$ and $B$ ऐसे हैं कि $\angle O B A=60^{\circ}$ है. मान लीजिए कि बिंदु $D$ पहले चतुर्थाश $(quadrant)$ में इस प्रकार है कि $O A D$ एक समबाहु त्रिभुज है. $D B$ की प्रबणता क्या होगी ?
$\sqrt{3}$
$\sqrt{2}$
$\frac{1}{\sqrt{2}}$
$\frac{1}{\sqrt{3}}$
समान लम्याई और आकार $(shape)$ की दो मोमर्बत्तियां हैं, दोनों समान दर से जलती है. पहली मोमथती $5$ घटें में और दूसरी मोमथत्ती $3$ घंटे में पूरी जल जाती है. दोनों मोमबत्तियां एक साथ जलाई जाती है. कितनें मिनटों के बाद पहली मोमबत्ती की लम्बाई दूसरी मोमथत्ती की तीन गुनी रह जाएगी ?
यदि रेखाओं $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ के निर्देशांक अक्षो के बीच रेखाखंडो के मध्य बिंदुओं द्वारा बने वक्र पर एक बिंदु $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ है, तो $\alpha$ बराबर है :
किसी आयत की एक भुजा $4x + 7y + 5 = 0$ के अनुदिश है। इसके दो शीर्ष $(-3, 1)$ व $(1, 1)$ हैं, तो अन्य तीन भुजाओं के समीकरण हैं
किसी रेखा के अक्षों से कटे भाग के मध्य बिन्दु के निर्देशांक $(3, 2)$ हैं, तो रेखा का समीकरण होगा
एक बिन्दु $P$, रेखा $2 x -3 y +4=0$ पर गति करता है। यदि $Q (1,4)$ तथा $R (3,-2)$ निशिचत बिन्दु हैं, तो $\triangle PQR$ के केन्द्रक का बिन्दुपथ (locus) एक रेखा है