$\left(2 x^2+\frac{1}{2 x}\right)^{11}$ ના વિસ્તરણમાં $x^{10}$ અને $x^7$ ના સહગુણકોનો નિરપેક્ષ તફાવત $........$ છે.
$12^3-12$
$11^3-11$
$10^3-10$
$13^3-13$
ધારોકે $\left(x-\frac{3}{x^2}\right)^n, x \neq 0 . n \in N$ ના વિસ્તરણમાં પ્રથમ ત્રણ પદોના સહગુણકોનો સરવાળો $376$ છે. તો $x^4$ નો સહગુણક $..........$ છે.
જો $(1+x)^{m}$ ના વિસ્તરણમાં $x^{2}$ નો સહગુણક $6$ હોય, તો $m$ નું ધન મૂલ્ય શોધો.
${(1 + x)^{20}}$ ના વિસ્તરણમાં ${r^{th}}$ અને ${(r + 4)^{th}}$ પદોના સહગુણક સમાન હોય તો . . . .
$(1+a)^{n}$ ના વિસ્તરણનાં ત્રણ ક્રમિક પદોના સહગુણકોનો ગુણોત્તર $1: 7 : 42$ છે. $n$ શોધો.
${\left( {1 + {x^n} + {x^{253}}} \right)^{10}}$ ના વિસ્તરણમાં $x^{1012}$ સહગુણક કેટલો થાય ? (જ્યાં $n \leq 22$ એ કોઈ પણ ધન પૃણાંક છે )