ધારોકે $\left(x-\frac{3}{x^2}\right)^n, x \neq 0 . n \in N$ ના વિસ્તરણમાં પ્રથમ ત્રણ પદોના સહગુણકોનો સરવાળો $376$ છે. તો $x^4$ નો સહગુણક $..........$ છે.
$404$
$403$
$402$
$405$
$\left(2 x^3-\frac{1}{3 x^2}\right)^5$ ના વિસ્તરણમાં $x^5$ નો સહગુણક $........$ હશે.
${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં $\frac{1}{x}$ નો સહગુણક મેળવો.
દ્વિપદી પ્રમેયનો ઉપયોગ કરી $\left(1+\frac{ x }{2}-\frac{2}{ x }\right)^{4}, x \neq 0$ નું વિસ્તરણ કરો.
જો ${(1 + x)^n}$ ના વિસ્તરણમાં $2^{nd}$, $3^{rd}$ અને $4^{th}$ પદના સહગુણક સમાંતર શ્રેણી માં હોય તો ${n^2} - 9n$ = . . . .