${(x + a)^n}$ ના વિસ્તરણમાં , $A$ એ અયુગ્મ પદનો સરવાળો દર્શાવે છે અને $B$ એ યુગ્મ પદનો સરવાળો દર્શાવે છે તો . . . ..
$AB = \frac{1}{4}{(x - a)^{2n}} - {(x + a)^{2n}}$
$2AB = {(x + a)^{2n}} - {(x - a)^{2n}}$
$4AB = {(x + a)^{2n}} - {(x - a)^{2n}}$
એકપણ નહીં.
$(x - 1)^2(x - 2)^3(x - 3)^4(x - 4)^5 .... (x - 10)^{11}$ ના વિસ્તરણમાં $x^{64}$ નો સહગુણક મેળવો
જો $\left({ }^{30} C _1\right)^2+2\left({ }^{30} C _2\right)^2+3\left({ }^{30} C _3\right)^2+\ldots \ldots+30\left({ }^{30} C _{30}\right)^2=$ $\frac{\alpha 60 !}{(30 !)^2}$ હોય,તો $\alpha=............$
જો $a$ અને $d$ બે સંકર સંખ્યા હોય તો શ્રેણી $a{C_0} - (a + d){C_1} + (a + 2d){C_2} - ........$ ના $(n + 1)$ પદનો સરવાળો મેળવો.
$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$ ના વિસ્તરણમાં $x^{70}$ નો સહગુણક ${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$ છે. તો $p+q$ ની શક્ય કિંમત ........... છે.
$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ ના વિસ્તરણમાં $x^{12}$ નો સહગુણક મેળવો