$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ ના વિસ્તરણમાં $x^{12}$ નો સહગુણક મેળવો
$\frac{325}{2}$
$325 \cdot (2^{12})$
$325 \cdot (2^{11})$
એક પણ નહી
${C_0}{C_r} + {C_1}{C_{r + 1}} + {C_2}{C_{r + 2}} + .... + {C_{n - r}}{C_n}$=
$(1-x)^{100}$ ના દ્વિપદી વિસ્તરણમાં પ્રથમ $50$ પદોના સહગુણકોનો સરવાળો $.......$ છે.
જો $n$ એ $1$ કરતાં મોટો પૂર્ણાક હોય , તો $a{ - ^n}{C_1}(a - 1){ + ^n}{C_2}(a - 2) + .... + {( - 1)^n}(a - n) = $
જો ગુણાકાર $\left(1+x+x^{2}+\ldots+x^{2 n}\right)\left(1-x+x^{2}-x^{3}+\ldots+x^{2 n}\right)$ માં $x$ ની બધીજ યુગ્મ ઘાતાંકનો સરવાળો $61,$ હોય તો $\mathrm{n}$ મેળવો.
$(1 + x + x^2 + x^3 +.... + x^{100})^3$ ના વિસ્તરણમાં $x^{100}$ નો સહગુણક મેળવો