Sum of odd terms is $A$ and sum of even terms is $B$ in the expansion ${(x + a)^n},$ then
$AB = \frac{1}{4}{(x - a)^{2n}} - {(x + a)^{2n}}$
$2AB = {(x + a)^{2n}} - {(x - a)^{2n}}$
$4AB = {(x + a)^{2n}} - {(x - a)^{2n}}$
None of these
$\frac{{{C_0}}}{1} + \frac{{{C_1}}}{2} + \frac{{{C_2}}}{3} + .... + \frac{{{C_n}}}{{n + 1}} = $
For integers $n$ and $r$, let $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{ll}{ }^{n} C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$
The maximum value of $k$ for which the sum $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ i\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ exists, is equal to ...... .
The coefficient of $x^8$ in the expansion of $(x-1) (x- 2) (x-3)...............(x-10)$ is :
Let $\alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ and $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$. If $5 \alpha=6 \beta$, then $n$ equals
Let $(1 + x)^m = C_0 + C_1x + C_2x^2 + C_3x^3 + . . . . . +C_mx^m$, where $C_r ={}^m{C_r}$ and $A = C_1C_3 + C_2C_4+ C_3C_5 + C_4C_6 + . . . . . .. + C_{m-2}C_m$, then which is false