નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :
જેમ-જેમ $\theta$ નું મૂલ્ય વધે, તેમ તેમ $\cos \theta$ નું મૂલ્ય વધે છે.
$\cos 0^{\circ}=1$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}=0.866$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=0.707$
$\cos 60^{\circ}=\frac{1}{2}=0.5$
$\cos 90^{\circ}=0$
It can be observed that the value of $\cos \theta$ does not increase in the interval of$0^{\circ}<\theta<90^{\circ}$
Hence, the given statement is false.
જો $\sin ( A - B )=\frac{1}{2}, \cos ( A + B )=\frac{1}{2}, 0^{\circ} < A + B \leq 90^{\circ}, A > B ,$ તો $A$ અને $B$ શોધો.
નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$
જો $2A$ એ લઘુકોણનું માપ હોય તથા $\tan 2 A=\cot \left(A-18^{\circ}\right)$ હોય, તો $A$ની કિંમત શોધો.
ત્રિકોણમિતીય ગુણોત્તરો $\sin A , \sec A$ અને $\tan A$ ને $\cot A$ નાં પદોમાં દર્શાવો.