નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
$L.H.S.=(\operatorname{cosec} \theta-\cot \theta)^{2}$
$=\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2}$
$=\frac{(1-\cos \theta)^{2}}{(\sin \theta)^{2}}=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta}$
$=\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}=\frac{(1-\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)}=\frac{1-\cos \theta}{1+\cos \theta}$
$=$ $R.H.S.$
કિંમત શોધો :
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
કિંમત શોધો :
$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$
કાટકોણ ત્રિકોણ $A B C$ માં ખૂણો $B$ કાટખૂણો છે. જો $\tan A =1,$ તો ચકાસો કે $2 \sin A \cos A=1$
નિત્યસમ $\sec ^{2} \theta=1+\tan ^{2} \theta$ નો ઉપયોગ કરીને સાબિત કરો કે, $\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta}$
નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$