ત્રિકોણમિતીય ગુણોત્તરો $\sin A , \sec A$ અને $\tan A$ ને $\cot A$ નાં પદોમાં દર્શાવો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that,

$\operatorname{cosec}^{2} A=1+\cot ^{2} A$

$\frac{1}{\operatorname{cosec}^{2} A}=\frac{1}{1+\cot ^{2} A}$

$\sin ^{2} A=\frac{1}{1+\cot ^{2} A}$

$\sin A=\pm \frac{1}{\sqrt{1+\cot ^{2} A}}$

$\sqrt{1+\cot ^{2} A}$ will always be positive as we are adding two positive quantities.

Therefore, $\sin A =\frac{1}{\sqrt{1+\cot ^{2} A }}$

We know that, $\tan A =\frac{\sin A }{\cos A }$

However, $\cot A=\frac{\cos A}{\sin A}$

Therefore, $\tan A =\frac{1}{\cot A }$

Also, $\sec ^{2} A=1+\tan ^{2} A$

$=1+\frac{1}{\cot ^{2} A}$

$=\frac{\cot ^{2} A+1}{\cot ^{2} A}$

$\sec A=\frac{\sqrt{\cot ^{2} A+1}}{\cot A}$

Similar Questions

નિત્યસમ $\operatorname{cosec}^{2} A=1+\cot ^{2} A$ નો ઉપયોગ કરીને $\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$ સાબિત કરો.

$\cot 85^{\circ}+\cos 75^{\circ}$ ને $0^{\circ}$ અને $45^{\circ}$ વચ્ચેના માપવાળા ત્રિકોણમિતીય ગુણોત્તરનો ઉપયોગ કરીને દર્શાવો.

જો $\sin ( A - B )=\frac{1}{2}, \cos ( A + B )=\frac{1}{2}, 0^{\circ} < A + B \leq 90^{\circ}, A > B ,$ તો $A$ અને $B$ શોધો.

ખૂણા $\angle A$ ના બધા જ ત્રિકોણમિતીય ગુણોત્તરોને $\sec$ $A$ નાં પદોમાં દર્શાવો.

સાબિત કરો :

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$