$\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$ ઉકેલો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have, $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$

$=\tan \left(\frac{\pi}{2}+x+\frac{\pi}{3}\right)$

or $\tan 2 x=\tan \left(x+\frac{5 \pi}{6}\right)$

Therefore $2 x=n \pi+x+\frac{5 \pi}{6},$ where $n \in Z$

or $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$

Similar Questions

અહી $S$ એ અંતરાલ $[0,4 \pi]$ માં સમીકરણ $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ ઉકેલનો સરવાળો દર્શાવે છે તો $\frac{8 \mathrm{~S}}{\pi}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $2{\tan ^2}\theta = {\sec ^2}\theta , $ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

સમીકરણ $sgn(sin x) = sin^2x + 2sinx + sgn(sin^2x)$  ના  $\left[ { - \frac{{5\pi }}{2},\frac{{7\pi }}{2}} \right]$ માં ઉકેલોની સંખ્યા મેળવો,

(જ્યાં $sgn(.)$ એ ચિહન વિધેય છે) 

સમીકરણ $(\sqrt 3  - 1)\,\sin \,\theta \, + \,(\sqrt 3  + 1)\,\cos \theta \, = \,2$ ના બધા $n \in Z$ ના વ્યાપક ઉકેલ મેળવો. 

જો $\alpha$ , $\beta$ એ $x$ ની વિવિધ કિમત છે કે જે સમીકરણ $a\cos x + b\sin x = c,$ નું પાલન કરે છે તો $\tan {\rm{ }}\left( {\frac{{\alpha + \beta }}{2}} \right) = $