Solve $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$
We have, $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$
$=\tan \left(\frac{\pi}{2}+x+\frac{\pi}{3}\right)$
or $\tan 2 x=\tan \left(x+\frac{5 \pi}{6}\right)$
Therefore $2 x=n \pi+x+\frac{5 \pi}{6},$ where $n \in Z$
or $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$
The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is
If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be
If $(1 + \tan \theta )(1 + \tan \phi ) = 2$, then $\theta + \phi =$ ....$^o$
If $2{\tan ^2}\theta = {\sec ^2}\theta ,$ then the general value of $\theta $ is
Find the general solution of $\cos ec\, x=-2$