If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be

  • A

    $\frac{\pi }{6}$

  • B

    $\frac{{5\pi }}{6}$

  • C

    $\frac{{7\pi }}{6}$

  • D

    $ - \frac{\pi }{6}$

Similar Questions

Solve $\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$

The solution of the equation $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ is

For which value of $x$  ;  $cosx > sinx,$ where $x\, \in \,\,\left( {\frac{\pi }{2}\,,\,\frac{{3\pi }}{2}} \right)$

If $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ is the solution of $4 \cos \theta+5 \sin \theta=1$, then the value of $\tan \alpha$ is

  • [JEE MAIN 2024]

Solve $2 \cos ^{2} x+3 \sin x=0$