The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is

  • [JEE MAIN 2018]
  • A

    $3$

  • B

    $4$

  • C

    $2$

  • D

    $1$

Similar Questions

The real roots of the equation $cos^7x\,  +\,  sin^4x\,  =\,  1$  in the interval $(-\pi, \pi)$ are

If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is

Number of solutions of the equation $2^x + x = 2^{sin \ x} +  \sin x$ in $[0,10\pi ]$ is -

Let $S=\left\{\theta \in[-\pi, \pi]-\left\{\pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\} \text {. }$  If $T =\sum_{\theta \in S } \cos 2 \theta$, then $T + n ( S )$ is equal

  • [JEE MAIN 2022]

The total number of solution of $sin^4x + cos^4x = sinx\, cosx$ in $[0, 2\pi ]$ is equal to