The number of solutions of $sin \,3x\, = cos\, 2x$ , in the interval $\left( {\frac{\pi }{2},\pi } \right)$ is
$3$
$4$
$2$
$1$
If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in [0,2 \pi ]$ , then maximum integral value of $x$ is
In a triangle $P Q R, P$ is the largest angle and $\cos P=\frac{1}{3}$. Further the incircle of the triangle touches the sides $P Q, Q R$ and $R P$ at $N, L$ and $M$ respectively, such that the lengths of $P N, Q L$ and $R M$ are consecutive even integers. Then possible length$(s)$ of the side$(s)$ of the triangle is (are)
$(A)$ $16$ $(B)$ $18$ $(C)$ $24$ $(D)$ $22$
The general value of $\theta $ in the equation $2\sqrt 3 \cos \theta = \tan \theta $, is
The smallest positive root of the equation $tanx\, -\, x = 0$ lies on
If $\cos \,\alpha + \cos \,\beta = \frac{3}{2}$ and $\sin \,\alpha + \sin \,\beta = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta + \cos \,2\theta $ is equal to