Find the general solution of $\cos ec\, x=-2$
$\cos ec\, x=-2$
It is known that
$\cos ec\, \frac{\pi}{6}=2$
$\therefore \cos ec \left(\pi+\frac{\pi}{6}\right)=-\cos ec\, \frac{\pi}{6}=-2$ and $\cos ec\, \left(2 \pi-\frac{\pi}{6}\right)=-\cos ec\, \frac{\pi}{6}=-2$
i.e., $\cos ec\, \frac{7 \pi}{6}=-2$ and $\cos ec\, \frac{11 \pi}{6}=-2$
Therefore, the principal solutions are $x=\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$
Now $\cos ec\, x=\cos ec\, \frac{7 \pi}{6}$
$\Rightarrow \sin x=\sin \frac{7 \pi}{6} \quad\left[\cos ec\, x=\frac{1}{\sin x}\right]$
$\Rightarrow x=n \pi+(-1)^{n} \frac{7 \pi}{6},$ where $n \in Z$
Therefore, the general solution is $x=n \pi+(-1)^{n} \frac{7 \pi}{6},$ where $n \in Z$.
The number of solution of the given equation $a\sin x + b\cos x = c$ , where $|c|\, > \,\sqrt {{a^2} + {b^2}} ,$ is
The equation $5x^2+12x + 13 = 0$ and $ax^2+bx + c = 0$ have a common root, where $a,b,c$ are the sides of $\Delta ABC$,then find $\angle C$ ? .....$^o$
If $\frac{{1 - {{\tan }^2}\theta }}{{{{\sec }^2}\theta }} = \frac{1}{2}$, then the general value of $\theta $ is
In a triangle $P Q R, P$ is the largest angle and $\cos P=\frac{1}{3}$. Further the incircle of the triangle touches the sides $P Q, Q R$ and $R P$ at $N, L$ and $M$ respectively, such that the lengths of $P N, Q L$ and $R M$ are consecutive even integers. Then possible length$(s)$ of the side$(s)$ of the triangle is (are)
$(A)$ $16$ $(B)$ $18$ $(C)$ $24$ $(D)$ $22$
If $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, then $\theta = $