Find the general solution of $\cos ec\, x=-2$
$\cos ec\, x=-2$
It is known that
$\cos ec\, \frac{\pi}{6}=2$
$\therefore \cos ec \left(\pi+\frac{\pi}{6}\right)=-\cos ec\, \frac{\pi}{6}=-2$ and $\cos ec\, \left(2 \pi-\frac{\pi}{6}\right)=-\cos ec\, \frac{\pi}{6}=-2$
i.e., $\cos ec\, \frac{7 \pi}{6}=-2$ and $\cos ec\, \frac{11 \pi}{6}=-2$
Therefore, the principal solutions are $x=\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$
Now $\cos ec\, x=\cos ec\, \frac{7 \pi}{6}$
$\Rightarrow \sin x=\sin \frac{7 \pi}{6} \quad\left[\cos ec\, x=\frac{1}{\sin x}\right]$
$\Rightarrow x=n \pi+(-1)^{n} \frac{7 \pi}{6},$ where $n \in Z$
Therefore, the general solution is $x=n \pi+(-1)^{n} \frac{7 \pi}{6},$ where $n \in Z$.
The number of solutions of the pair of equations $ 2 \sin ^2 \theta-\cos 2 \theta=0 $, $ 2 \cos ^2 \theta-3 \sin \theta=0$ in the interval $[0,2 \pi]$ is
Let $S=\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$. Then the number of elements in the set $=\{\theta \in S : \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ is $...$
If $1 + \sin x + {\sin ^2}x + .....$ to $\infty = 4 + 2\sqrt 3 ,\,0 < x < \pi ,$ then
Number of solutions of $8cosx$ = $x$ will be
If $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, then $x = $