यहाँ आरेख में, किसी गोलाकार कोश (शैल) के कोटर के भीतर दो बिन्दु-आवेश $+ Q$ तथा $- Q$ दर्शाये गये हैं। ये आवेश कोटर की सतह के निकट इस प्रकार रखे गये हैं कि, एक आवेश कोश के केन्द्र की एक ओर है और दूसरा केन्द्र के विपरीत दूसरी ओर। यदि, भीतरी तथा बाहरी सतहों (पृष्ठों) पर, पृष्ठ आवेश क्रमशः $\sigma_{1}$ तथा $\sigma_{2}$ और नेट आवेश क्रमशः $Q_{1}$ तथा $Q _{2}$ हो तो :
$\begin{array}{l}
{\sigma _1}\, \ne \,0,\,\,{Q_1}\, = \,0\\
{\sigma _2}\, = \,0,\,\,{Q_2}\, = \,0
\end{array}$
$\begin{array}{l}
{\sigma _1}\, \ne \,0,\,\,{Q_1}\, = \,0\\
{\sigma _2}\, \ne \,0,\,\,{Q_2}\, = \,0
\end{array}$
$\begin{array}{l}
{\sigma _1}\, = \,0,\,\,{Q_1}\, = \,0\\
{\sigma _2}\, = \,0,\,\,{Q_2}\, = \,0
\end{array}$
$\begin{array}{l}
{\sigma _1}\, \ne \,0,\,\,{Q_1}\, \ne \,0\\
{\sigma _2}\, \ne \,0,\,\,{Q_2}\, \ne \,0
\end{array}$
दो बड़ी, पतली धातु की प्लेटें एक-दूसरे के समानांतर एवं निकट हैं। इनके भीतरी फलकों पर, प्लेटों के पृष्ठीय आवेश घनत्वों के चिह्न विपरीत हैं तथा इनका परिमाण $17.0 \times 10^{-22} C /$ $m ^{2}$ है।
$(a)$ पहली प्लेट के बाह्य क्षेत्र में, $(b)$ दूसरी प्लेट के बाह्हा क्षेत्र में, तथा $(c)$ प्लेटों के बीच में विद्र
त्रिज्या $R$ और कुल आवेश $Q$ वाले एक ठोस गोले पर आवेश घनत्व वितरण $P(r)=\frac{Q}{\pi R^{4}} r,$ गोले के केन्द्र से $r_{1}$ दूरी पर गोले के अन्दर एक बिन्दु $'p'$ पर विघुत क्षेत्र का परिमाण है :
एक गोलीय सममिती आवेश वितरण आवेश घनत्व का निम्नलिखित विचरण रखता है : $\rho(r)=\rho_{o}\left(1-\frac{r}{R}\right) r < R$ के लिए $\rho( r )=0 \quad r \geqslant R$ के लिए जहाँ $r$ आवेश वितरण के केन्द्र से दूरी हैं और $\rho_{ o }$ एक स्थिरांक है। एक अन्तः बिन्दु $( r < R )$ पर विद्युत क्षेत्र है
त्रिज्या $R$ के गोले के आयतन में विद्युत आवेश का समान वितरण है। इसके केन्द्र से $x$ दूरी पर $x < R$ के लिए, विद्युत क्षेत्र के अनुक्रमानुपाती होगा
चित्र में, धनात्मक आवेश की एक बहुत बड़ी समतल शीट दर्शायी गयी है। आवेश वितरण से $l$ व $2 l$ दूरी पर दो बिन्दु $P _1$ व $P _2$ है। यदि $\sigma$ पृप्ठ आवेश घनत्व है, तब $P _1$ व $P _2$ पर विद्युत क्षेत्र $E _1$ व $E _2$ के परिमाण क्रमश: है।