दो बड़ी, पतली धातु की प्लेटें एक-दूसरे के समानांतर एवं निकट हैं। इनके भीतरी फलकों पर, प्लेटों के पृष्ठीय आवेश घनत्वों के चिह्न विपरीत हैं तथा इनका परिमाण $17.0 \times 10^{-22} C /$ $m ^{2}$ है।
$(a)$ पहली प्लेट के बाह्य क्षेत्र में, $(b)$ दूसरी प्लेट के बाह्हा क्षेत्र में, तथा $(c)$ प्लेटों के बीच में विद्र
The situation is represented in the following figure. $A$ and $B$ are two parallel plates close to each other. Outer region of plate $A$ is labelled as $I$, outer region of plate $B$ is labelled as $III, $and the region between the plates, $A$ and $B$, is labelled as $II.$
Charge density of plate $A , \sigma=17.0 \times 10^{-22} \,C / m ^{2}$
Charge density of plate $B , \sigma=-17.0 \times 10^{-22} \,C / m ^{2}$
In the regions, $I$ and $III$, electric field $E$ is zero. This is because charge is not enclosed by the respective plates. Electric field $E$ in region $II$ is given by the relation,
$E=\frac{\sigma}{\varepsilon_{0}}$
Where, $\varepsilon_{0}=$ Permittivity of free space $=8.854 \times 10^{-12}\, N ^{-1} \,C ^{2} \,m ^{-2}$
$=1.92 \times 10^{-10} \,N / C$
$E=\frac{17.0 \times 10^{-22}}{8.854 \times 10^{-12}}$
Therefore, electric field between the plates is $1.92 \times 10^{-10}\; N / C$
$12\, cm$ त्रिज्या वाले एक गोलीय चालक के पृष्ठ पर $1.6 \times 10^{-7} \,C$ का आवेश एकसमान रूप से वितरित है।
$(a)$ गोले के अंदर
$(b)$ गोले के ठीक बाहर
$(c)$ गोले के केंद्र से $18 cm$ पर अवस्थित, किसी बिंदु पर विध्यूत क्षेत्र क्या होगा?
एक गोलीय सममिती आवेश वितरण आवेश घनत्व का निम्नलिखित विचरण रखता है : $\rho(r)=\rho_{o}\left(1-\frac{r}{R}\right) r < R$ के लिए $\rho( r )=0 \quad r \geqslant R$ के लिए जहाँ $r$ आवेश वितरण के केन्द्र से दूरी हैं और $\rho_{ o }$ एक स्थिरांक है। एक अन्तः बिन्दु $( r < R )$ पर विद्युत क्षेत्र है
केन्द्र से $\mathrm{r}$ दूरी के साथ $\mathrm{R}$ त्रिज्या के एक एकसमान आवेशित कुचालक ठोस गोले के कारण वैद्युत क्षेत्र का अभिरेखीय परिवर्तन निम्न प्रकार प्रंदर्शित है:
$(a)$ दर्शाइए कि आवेशित पृष्ठ के एक पार्श्व से दूसरे पार्श्व पर स्थिरवैध्यूत क्षेत्र के अभिलंब घटक में असांतत्य होता है, जिसे
$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{\rho}}$
द्वारा व्यक्त किया जाता है। जहाँ $\hat{ n }$ एक बिदु पर पृष्ठ के अभिलंब एकांक सदिश है तथा $\sigma$ उस बिंदु पर पृष्ठ आवेश घनत्व है ( $\hat{ n }$ की दिशा पार्श्व $1$ से पार्श्व $2$ की ओर है।) अत: दर्शाइए कि चालक के ठीक बाहर विध्यूत क्षेत्र $\sigma \hat{ n } / \varepsilon_{0}$ है।
$(b)$ दर्शाइए कि आवेशित पृष्ठ के एक पार्श्व से दूसरे पार्श्व पर स्थिरवैध्यूत क्षेत्र का स्पर्शीय घटक संतत है।
त्रिज्या $R$ के गोले के आयतन में विद्युत आवेश का समान वितरण है। इसके केन्द्र से $x$ दूरी पर $x < R$ के लिए, विद्युत क्षेत्र के अनुक्रमानुपाती होगा