त्रिज्या $R$ और कुल आवेश $Q$ वाले एक ठोस गोले पर आवेश घनत्व वितरण $P(r)=\frac{Q}{\pi R^{4}} r,$ गोले के केन्द्र से $r_{1}$ दूरी पर गोले के अन्दर एक बिन्दु $'p'$ पर विघुत क्षेत्र का परिमाण है :

  • [AIEEE 2009]
  • A

    $0$

  • B

    $\frac{Q}{{4\pi {\varepsilon _0}{r_1}^2}}$

  • C

    $\;\frac{Q}{{4\pi {\varepsilon _0}{R^4}}}$

  • D

    $\;\frac{{Q{r_1}^2}}{{3\pi {\varepsilon _0}{R^4}}}$

Similar Questions

$10 \,cm$ त्रिज्या के चालक गोले पर अज्ञात परिणाम का आवेश है। यद् गोले के केंद्र से $20\, cm$ दूरी पर विध्यूत क्षेत्र $1.5 \times 10^{3}\, N / C$ त्रिज्यत: अंतर्मुखी (radially inward) है तो गोले पर नेट आवेश कितना है?

रैखिक आवेश घनत्व $\lambda$ वाला एक लंबा आवेशित बेलन एक खोखले समाक्षीय चालक बेलन द्वारा घिरा है। दोनों बेलनों के बीच के स्थान में विध्यूत क्षेत्र कितना है?

निम्न में से कौनसा ग्राफ, $R$ त्रिज्या के खोखले गोलीय चालक के कारण विद्युत क्षेत्र $E$ तथा गोले के केन्द्र से दूरी $r$ में परिवर्तन को दर्शाता है

$(a)$ दर्शाइए कि आवेशित पृष्ठ के एक पार्श्व से दूसरे पार्श्व पर स्थिरवैध्यूत क्षेत्र के अभिलंब घटक में असांतत्य होता है, जिसे

$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{\rho}}$

द्वारा व्यक्त किया जाता है। जहाँ $\hat{ n }$ एक बिदु पर पृष्ठ के अभिलंब एकांक सदिश है तथा $\sigma$ उस बिंदु पर पृष्ठ आवेश घनत्व है ( $\hat{ n }$ की दिशा पार्श्व $1$ से पार्श्व $2$ की ओर है।) अत: दर्शाइए कि चालक के ठीक बाहर विध्यूत क्षेत्र $\sigma \hat{ n } / \varepsilon_{0}$ है।

$(b)$ दर्शाइए कि आवेशित पृष्ठ के एक पार्श्व से दूसरे पार्श्व पर स्थिरवैध्यूत क्षेत्र का स्पर्शीय घटक संतत है।

चित्र में, धनात्मक आवेश की एक बहुत बड़ी समतल शीट दर्शायी गयी है। आवेश वितरण से $l$ व $2 l$ दूरी पर दो बिन्दु $P _1$ व $P _2$ है। यदि $\sigma$ पृप्ठ आवेश घनत्व है, तब $P _1$ व $P _2$ पर विद्युत क्षेत्र $E _1$ व $E _2$ के परिमाण क्रमश: है।

  • [JEE MAIN 2022]