આકૃતિમાં દર્શાવ્યા પ્રમાણે બે બિંદુવત વિજભાર $+Q$ અને $-Q$ ને એક ગોળીય કવચની બખોલમાં મૂકેલા છે. વિજભારને બખોલની સપાટીની નજીક અને કેન્દ્રથી વિરુદ્ધ દિશામાં મૂકેલા છે. જો $\sigma _1$ એ અંદરની સપાટી પૃષ્ઠ વિજભારઘનતા અને $Q_1$ તેના પર રહેલો કુલ વિજભાર અને $\sigma _2$ એ બહારની સપાટીની પૃષ્ઠ વિજભારઘનતા અને $Q_2$ તેના પર રહેલો કુલ વિજભાર હોય તો ...

822-734

  • [JEE MAIN 2015]
  • A

    $\begin{array}{l} {\sigma _1}\, \ne \,0,\,\,{Q_1}\, = \,0\\ {\sigma _2}\, = \,0,\,\,{Q_2}\, = \,0 \end{array}$

  • B

    $\begin{array}{l} {\sigma _1}\, \ne \,0,\,\,{Q_1}\, = \,0\\ {\sigma _2}\, \ne \,0,\,\,{Q_2}\, = \,0 \end{array}$

  • C

    $\begin{array}{l} {\sigma _1}\, = \,0,\,\,{Q_1}\, = \,0\\ {\sigma _2}\, = \,0,\,\,{Q_2}\, = \,0 \end{array}$

  • D

    $\begin{array}{l} {\sigma _1}\, \ne \,0,\,\,{Q_1}\, \ne \,0\\ {\sigma _2}\, \ne \,0,\,\,{Q_2}\, \ne \,0 \end{array}$

Similar Questions

$R$ ત્રિજયાના ગોળીય કવચમાં કેન્દ્રથી અંતર નો વિદ્યુતક્ષેત્ર $E$ વિરુધ્ધનો આલેખ કેવો થાય?

$R$ ત્રિજયા ધરાવતા વિદ્યુતભારીત વાહક ગોળીય કવચના કેન્દ્રથી $\frac{{3R}}{2}$ અંતરે વિદ્યુતક્ષેત્ર  $E\; V/m$ છે. તેના કેન્દ્રથી $\frac{R}{2}$ અંતરે વિદ્યુતક્ષેત્ર કેટલું થાય?

  • [AIPMT 2010]

ગાઉસના પ્રમેય પરથી કુલંબનો નિયમ સમજાવો.

$R$ ત્રિજ્યાની ગોળીય કવચ પર $Q$ વિધુતભાર વિતરીત છે. તે $q$ વિધુતભાર પર $F$ બળ લગાડે છે. જો $q$ વિધુતભાર ગોળીય કવચ થી $r$ અંતરે હોય તો બળ $F$ માટે કયું વિધાન સાચું છે.

  • [JEE MAIN 2020]

ત્રિજયા $‘a’$ અને ત્રિજયાા $‘b’$ ધરાવતા બે સમકેન્દ્રિય ગોળા ( જુઓ ચિત્ર ) ની વચ્ચેના ભાગમાં વિદ્યુત ઘનતા $\rho = \frac{A}{r}$ છે.જયાં $A$ અચળાંક છે અને કેન્દ્ર થી અંતર $r$ છે. ગોળાઓના કેન્દ્ર પર બિંદુવત વિદ્યુતભાર $Q$ છે.ગોળાઓનના વચ્ચેના ભાગમાં વિદ્યુતક્ષેત્ર અચળ રહે તે માટેના $A$ નું મૂલ્ય છે.

  • [JEE MAIN 2016]