ધારો કે $R_*$ તમામ શૂન્યતર વાસ્તવિક સંખ્યાઓનો ગણ છે. સાબિત કરો કે વિધેય $f: R_* \rightarrow R_*,$ $f(x)=\frac{1}{x}$ વડે વ્યાખ્યાયિત વિધય $f$ એક-એક અને વ્યાપ્ત છે. જો પ્રદેશ $R_*$ ના બદલે $N$ લેવામાં આવે અને સહપ્રદેશ $R_*$ જ રહે તો શું આ પરિણામ સત્ય રહેશે ?
It is given that $f : R ^{*} \rightarrow R$. is defined by $f ( x )=\frac{1}{x}$
For one-one:
Let $x, y \in R *$ such that $f(x)=f(y)$
$\Rightarrow \frac{1}{x}=\frac{1}{y}$
$\Rightarrow x=y$
$\therefore f$ is one $-$ one.
For onto:
It is clear that for $y \in R *$, there exists $x=\frac{1}{y} \in R *[\text { as } y \neq 0]$ such that
$f(x)=\frac{1}{\left(\frac{1}{y}\right)}=y$
$\therefore f$ is onto.
Thus, the given function $f$ is one $-$ one and onto.
Now, consider function g: $N \rightarrow R$. defined by $g ( x )=\frac{1}{x}$
We have, $g\left(x_{1}\right)=g\left(x_{2}\right)$
$\Rightarrow=\frac{1}{x_{1}}=\frac{1}{x_{2}}$
$\Rightarrow x_{1}=x_{2}$
$\therefore g$ is one-one.
Further, it is clear that $g$ is not onto as for $1.2 \in = R_*$. there does not exit any $x$ in $N$ such that $g ( x )$
$=\frac{1}{1.2}$
Hence, function $g$ is one-one but not onto.
આપેલ પૈકી . . . . યુગ્મ વિધેય છે.
$f(x) = [\cos x + \sin x]$ નો વિસ્તારગણ ......... થાય. (જ્યા $[.]$ = $G.I.F.$)
જો $f(x) = \cos (\log x)$, તો $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $
અહી $A=\{0,1,2,3,4,5,6,7\} $ આપેલ છે. જો એક-એક અને વ્યાપ્ત વિધેય $f: A \rightarrow A$ ની સંખ્યા મેળવો કે જેથી $f(1)+f(2)=3-f(3)$ થાય.
ધારો કે $f ^1( x )=\frac{3 x +2}{2 x +3}, x \in R -\left\{\frac{-3}{2}\right\}$ છે. $n \geq 2$, માટે $f ^{ n }( x )= f ^1 0 f ^{ n -1}( x )$ પ્રમાણે વ્યાખ્યાયિત કરો.જો $f ^5( x )=\frac{ ax + b }{ bx + a }, \operatorname{gcd}( a , b )=1$, જ્યાં $a$ અને $b$ પરસ્પર અવિભાજ્ય છે,તો $a+b=............$.