Show that the function $f: R_* \rightarrow R_*$ defined by $f(x)=\frac{1}{x}$ is one-one and onto, where $R_*$ is the set of all non-zero real numbers. Is the result true, if the domain $R_*$ is replaced by $N$ with co-domain being same as $R _*$ ?
It is given that $f : R ^{*} \rightarrow R$. is defined by $f ( x )=\frac{1}{x}$
For one-one:
Let $x, y \in R *$ such that $f(x)=f(y)$
$\Rightarrow \frac{1}{x}=\frac{1}{y}$
$\Rightarrow x=y$
$\therefore f$ is one $-$ one.
For onto:
It is clear that for $y \in R *$, there exists $x=\frac{1}{y} \in R *[\text { as } y \neq 0]$ such that
$f(x)=\frac{1}{\left(\frac{1}{y}\right)}=y$
$\therefore f$ is onto.
Thus, the given function $f$ is one $-$ one and onto.
Now, consider function g: $N \rightarrow R$. defined by $g ( x )=\frac{1}{x}$
We have, $g\left(x_{1}\right)=g\left(x_{2}\right)$
$\Rightarrow=\frac{1}{x_{1}}=\frac{1}{x_{2}}$
$\Rightarrow x_{1}=x_{2}$
$\therefore g$ is one-one.
Further, it is clear that $g$ is not onto as for $1.2 \in = R_*$. there does not exit any $x$ in $N$ such that $g ( x )$
$=\frac{1}{1.2}$
Hence, function $g$ is one-one but not onto.
The graph of $y = f(x)$ is shown then number of solutions of the equation $f(f(x)) =2$ is
Let $R =\{ a , b , c , d , e \}$ and $S =\{1,2,3,4\}$. Total number of onto function $f: R \rightarrow S$ such that $f(a) \neq$ 1 , is equal to $.............$.
Let $[t]$ be the greatest integer less than or equal to $t$. Let $A$ be the set of al prime factors of $2310$ and $f: A \rightarrow \mathbb{Z}$ be the function $f(x)=\left[\log _2\left(x^2+\left[\frac{x^3}{5}\right]\right)\right]$. The number of one-to-one functions from $A$ to the range of $f$ is :
Let $f(x)$ be a non-constant polynomial with real coefficients such that $f\left(\frac{1}{2}\right)=100$ and $f(x) \leq 100$ for all real $x$. Which of the following statements is NOT necessarily true?
Domain of the function $f(x) = {\sin ^{ - 1}}(1 + 3x + 2{x^2})$ is