યાદ કરોકે $\pi $ ને એક વર્તુળનો પરિઘ $(c)$ અને તેના વ્યાસ $(d)$ ના ગુણોત્તર તરીકે દર્શાવવામાં આવે છે. એટલે કે $\pi=\frac{c}{d}$. તે વિરોધાભાસ છે. કારણ કે $\pi$ એ અસંમેય સંખ્યા છે. આ વિરોધાભાસનો ઉકેલ કેવી રીતે લાવશો ?
સાબિત કરો કે $1.272727 \ldots=1 . \overline{27}$ ને $p$ પૂર્ણાક હોય, $q$ શૂન્યેતર પૂર્ણાક હોય તેવાં $p$, $q$ માટે $\frac {p }{q }$ સ્વરૂપમાં દર્શાવી શકાય છે.
નીચેના વિધાનો સત્ય છે કે અસત્ય ? કારણ સહિત ઉત્તર આપો.
$(i)$ દરેક પ્રાકૃતિક સંખ્યા એ પૂર્ણ સંખ્યા છે.
$(ii)$ દરેક પૂર્ણાક એ પૂર્ણ સંખ્યા છે.
$(iii)$ દરેક સંમેય સંખ્યા એ પૂર્ણ સંખ્યા છે.
$\frac{5}{\sqrt{3}-\sqrt{5}}$ ના છેદનું સંમેયીકરણ કરો.
જેમાં $p$ અને $q$ ને $1$ સિવાયનો કોઈ સામાન્ય અવયવ ન હોય તથા જેની દશાંશ અભિવ્યક્તિ સાન્ત હોય તેવા $\frac{p}{q}$ $(q \neq 0)$ સ્વરૂપના સંમેય સંખ્યાનાં કેટલાંક ઉદાહરણ લો. (જ્યાં $p$ અને $q$ પૂર્ણાક છે અને $q \neq 0$ છે.) શું તમે અનુમાન લગાવી શકો છો કે $q$ એ કયા ગુણધર્મનું પાલન કરવું જોઈએ ?