$\frac{1}{7+3 \sqrt{2}}$ के हर का परिमेयकरण कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{1}{7+3 \sqrt{2}}=\frac{1}{7+3 \sqrt{2}} \times\left(\frac{7-3 \sqrt{2}}{7-3 \sqrt{2}}\right)=\frac{7-3 \sqrt{2}}{49-18}=\frac{7-3 \sqrt{2}}{31}$

Similar Questions

बताइए नीचे दी गई संख्याओं में कौन-कौन परिमेय हैं और कौन-कौन अपरिमेय हैं

$(i)$ $2-\sqrt{5}$

$(ii)$ $(3+\sqrt{23})-\sqrt{23}$

$(iii)$ $\frac{2 \sqrt{7}}{7 \sqrt{7}}$

$(iv)$ $\frac{1}{\sqrt{2}}$

$(v)$ $2 \pi$

परिमेय संख्याओं $\frac{5}{7}$ और $\frac{9}{11}$ के बीच की तीन अलग-अलग अपरिमेय संख्याएँ ज्ञात कीजिए।

वास्तविक संख्या रेखा पर $\sqrt{3}$ का स्थान निर्धारण कीजिए।

दिखाइए कि $0.2353535 \ldots=0.2 \overline{35}$ को $\frac{p}{q}$ के रूप में व्यक्त कर सकते हैं, जहाँ $p$ और $q$ पूणांक हैं और $q \neq 0$ है।

$2 \sqrt{2}+5 \sqrt{3}$ और $\sqrt{2}-3 \sqrt{3}$ को जोडिए।