Rationalise the denominator of $\frac{1}{7+3 \sqrt{2}}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{1}{7+3 \sqrt{2}}=\frac{1}{7+3 \sqrt{2}} \times\left(\frac{7-3 \sqrt{2}}{7-3 \sqrt{2}}\right)=\frac{7-3 \sqrt{2}}{49-18}=\frac{7-3 \sqrt{2}}{31}$

Similar Questions

What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $\frac{1}{17}$ ?

Rationalise the denominator of $\frac{1}{\sqrt{2}}$.

Visualise $3.765$ on the number line, using successive magnification.

Show that $1.272727 \ldots=1 . \overline{27}$ . can be expressed in the form $\frac {p }{q }$, where $p$ and $q$ are integers and $q \ne 0$.

Write three numbers whose decimal expansions are non-terminating non-recurring.