વિધેય $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ નો વિસ્તાર મેળવો.

  • A

    $( - \infty ,\;\infty )$

  • B

    ${1}$

  • C

    $(-1, 1)$

  • D

    $(0, 1)$

Similar Questions

વિધેય $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, કે જ્યાં $p > 0,\;q > 0,\;r > 0$ ની ન્યૂનતમ કિમંત ધારો કે માત્ર એકજ બિંદુએ મળે જો  . . . 

  • [IIT 1995]

ધારો કે $f:[2,\;2] \to R$ ; $f(x) = \left\{ \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\; - 2 \le x \le 0\\x - 1\;\;\;\;\;{\rm{for}}\;0 \le x \le 2\end{array} \right.$, તો $\{ x \in ( - 2,\;2):x \le 0$ અને $f(|x|) = x\} = $

જો દરેક વાસ્તવિક સંખ્યા માટે $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$ તો $ f$ ની ન્યૂનતમ કિમત મેળવો.

જો મહતમ પૃણાંક વિધેય હોય કે જેનો પ્રદેશ વાસ્તવિક સંખ્યા હોય તો તેનો વિસ્તાર મેળવો.

જો  $0 < x < \frac{\pi }{2},$ હોય તો