જો દરેક વાસ્તવિક સંખ્યા માટે $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$ તો $ f$ ની ન્યૂનતમ કિમત મેળવો.
$f$ એ આવૃત વિધેય હોવાથી શક્ય નથી.
$f$ એ આવૃત હોવા છતાં શક્ય નથી.
$+1$
$-1$
જો $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 + .... + \infty } } } } \right)$ હોય તો $x$ ની કિમત .......... થાય.
નીચેનામાંથી ક્યુ વિધાન સાચુ છે?
$'a'$ ની કઇ કિમત માટે અસમતા ${x^2} - (a + 2)x - (a + 3) < 0$ નુ ઓછામા ઓછુ એક વાસ્તવિક કિમત $x$ માટે સંતોષે છે.
સાબિત કરો કે $f: R \rightarrow R$, $f(x)=x^{2},$ દ્વારા વ્યાખ્યાયિત વિધેય એક-એક પણ નથી અને વ્યાપ્ત પણ નથી.
જો $f(x) = sin\,x,\,\,g(x) = x.$
વિધાન $1:$ $f(x)\, \le \,g\,(x)$ દરેક $x \in (0,\infty )$
વિધાન $2:$ $f(x)\, \le \,1$ દરેક $(x)\in (0,\infty )$ પરંતુ $g(x)\,\to \infty$ જો $x\,\to \infty$ હોય તો .