Range of the function $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ is
$( - \infty ,\;\infty )$
${1}$
$(-1, 1)$
$(0, 1)$
Let $f : R \rightarrow R$ be a function such that $f(x)=\frac{x^2+2 x+1}{x^2+1}$. Then
The graph of function $f$ contains the point $P (1, 2)$ and $Q(s, r)$. The equation of the secant line through $P$ and $Q$ is $y = \left( {\frac{{{s^2} + 2s - 3}}{{s - 1}}} \right)$ $x - 1 - s$. The value of $f ‘ (1)$, is
Show that the Modulus Function $f : R \rightarrow R$ given by $(x)=|x|$, is neither one - one nor onto, where $|x|$ is $x$, if $x$ is positive or $0$ and $| X |$ is $- x$, if $x$ is negative.
solve $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$
Tho damnin of tho finction $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^{2}-1}\right)}{\pi}\right)$ is