Prove that:
$2 \sin ^{2} \frac{\pi}{6}+\cos ec ^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}=\frac{3}{2}$
$L.H.S.$ $=2 \sin ^{2} \frac{\pi}{6}+\cos ec ^{2}\, \frac{7 \pi}{6} \,\cos ^{2} \,\frac{\pi}{3}$
$=2\left(\frac{1}{2}\right)^{2}+\cos ec ^{2}\left(\pi+\frac{\pi}{6}\right)\left(\frac{1}{2}\right)^{2}$
$=2 \times \frac{1}{4}+\left(-\cos ec \,\frac{\pi}{6}\right)^{2}\left(\frac{1}{4}\right)$
$=\frac{1}{2}+(-2)^{2}\left(\frac{1}{4}\right)$
$=\frac{1}{2}+\frac{4}{4}=\frac{1}{2}+1=\frac{3}{2}$
$=R .H.S.$
The product $\left(1+\tan 1^{\circ}\right)\left(1+\tan 2^{\circ}\right)\left(1+\tan 3^{\circ}\right)$ $. .\left(1+\tan 45^{\circ}\right)$ equals
Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).
$-4$
If $\sin A,\cos A$ and $\tan A$ are in $G.P.$, then ${\cos ^3}A + {\cos ^2}A$ is equal to
Find the value of $\tan \frac{13 \pi}{12}$
The radius of the circle whose arc of length $15\,cm$ makes an angle of $3/4$ radian at the centre is .....$cm$