If ${\tan ^2}\alpha {\tan ^2}\beta + {\tan ^2}\beta {\tan ^2}\gamma + {\tan ^2}\gamma {\tan ^2}\alpha $$ + 2{\tan ^2}\alpha {\tan ^2}\beta {\tan ^2}\gamma = 1,$ then the value of ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $ is

  • A

    $0$

  • B

    $-1$

  • C

    $1$

  • D

    None of these

Similar Questions

If $a\,{\cos ^3}\alpha + 3a\,\cos \alpha \,{\sin ^2}\alpha = m$ and $a\,{\sin ^3}\alpha + 3a\,{\cos ^2}\alpha \sin \alpha = n,$ then  ${(m + n)^{2/3}} + {(m - n)^{2/3}}$ is equal to

If $\theta $ lies in the second quadrant, then the value of $\sqrt {\left( {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}} \right)} + \sqrt {\left( {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}} \right)} $

Find the value of $\sin \frac{31 \pi}{3}$.

If $5\tan \theta = 4,$ then $\frac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 2\cos \theta }} = $

Prove that $\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)=\sin (x+y)$