સાબિત કરો કે : $(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S.$ $=(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x$

$=\sin 3 x \sin x+\sin ^{2} x+\cos 3 x \cos x-\cos ^{2} x$

$=\cos 3 x \cos x+\sin 3 x \sin x-\left(\cos ^{2}-\sin ^{2} x\right)$

$=\cos (3 x-x)-\cos 2 x \quad[\cos (A-B)=\cos A \cos B+\sin A \sin B]$

$=\cos 2 x-\cos 2 x$

$=0$

$= R . H.S.$

Similar Questions

જો બે વર્તુળોમાં સમાન લંબાઈનાં ચાપ કેન્દ્ર આગળ $60^{\circ}$ અને $75^{\circ}$ ના ખૂણા આંતરે, તો તેમની ત્રિજ્યાઓનો ગુણોત્તર શોધો. 

જો  $\cos \theta - \sin \theta = \sqrt 2 \sin \theta ,$ તો  $\cos \theta + \sin \theta $ મેળવો. 

સાબિત કરો કે : $2 \sin ^{2}\, \frac{3 \pi}{4}+2 \cos ^{2}\, \frac{\pi}{4}+2 \sec ^{2}\, \frac{\pi}{3}=10$

મૂલ્ય શોધો. $\sin 765^{\circ}$

જો  $\theta $ એ બીજા ચરણમાં હોય તો  $\sqrt {\left( {\frac{{1 - \sin \theta }}{{1 + \sin \theta }}} \right)} + \sqrt {\left( {\frac{{1 + \sin \theta }}{{1 - \sin \theta }}} \right)} $ ની કિમત મેળવો.