સાબિત કરો કે : $\cot ^{2} \frac{\pi}{6}+\cos ec \,\frac{5 \pi}{6}+3 \tan ^{2}\, \frac{\pi}{6}=6$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L.H.S.$ $=\cot ^{2}\, \frac{\pi}{6}+\cos ec \,\frac{5 \pi}{6}+3 \tan ^{2}\, \frac{\pi}{6}$

$=(\sqrt{3})^{2}+\cos ec\, \left(\pi-\frac{\pi}{6}\right)+3\left(\frac{1}{\sqrt{3}}\right)^{2}$

$=3+\cos ec\, \frac{\pi}{6}+3 \times \frac{1}{3}$

$=3+2+1=6$

$= R . H.S$

Similar Questions

જો $x$ ની વાસ્તવિક કિમત માટે  $\cos \theta = x + \frac{1}{x},$ તો  . . .. 

જો $\left| {\cos \,\theta \,\left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}\,} \right|\, \le k,$ તો $k$ ની કિમત મેળવો.

જો $a\,{\cos ^3}\alpha + 3a\,\cos \alpha \,{\sin ^2}\alpha = m$ અને $a\,{\sin ^3}\alpha + 3a\,{\cos ^2}\alpha \sin \alpha = n,$ તો ${(m + n)^{2/3}} + {(m - n)^{2/3}}  = . . .$

${\sin ^6}\theta + {\cos ^6}\theta + 3{\sin ^2}\theta {\cos ^2}\theta = $

જો $75$ સેમી લંબાઈવાળા લોલકનું અંત્યબિંદુ $21$ સેમીનાં ચાપ બનાવે, તો તેણે કેન્દ્ર આગળ બનાવેલ ખૂણાનાં રેડિયન માપ શોધો.