निम्नलिखित को सिद्ध कीजिए
$\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$
It is known that $\cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \cdot \sin \left(\frac{A-B}{2}\right)$
$\therefore$ $L.H.S.$ $=\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)$
$=-2 \sin \left\{\frac{\left(\frac{3 \pi}{4}+x\right)+\left(\left(\frac{3 \pi}{4}-x\right)\right)}{2}\right\} \cdot \sin \left\{\frac{\left(\frac{3 \pi}{4}+x\right)-\left(\frac{3 \pi}{4}-x\right)}{2}\right\}$
$=-2 \sin \left(\frac{3 \pi}{4}\right) \sin x$
$=-2 \sin \left(\pi-\frac{\pi}{4}\right) \sin x$
$=-2 \sin \frac{\pi}{4} \sin x$
$=-2 \times \frac{1}{\sqrt{2}} \times \sin x$
$=-\sqrt{2} \sin x$
$= R . H.S.$
यदि $x{\sin ^3}\alpha + y{\cos ^3}\alpha = \sin \alpha \cos \alpha $ व $x\sin \alpha - y\cos \alpha = 0,$ तो ${x^2} + {y^2} = $
निम्न में से कौन सा सम्बन्ध सत्य है
एक वृत्त, जिसकी त्रिज्या $100$ सेमी है, की $22$ सेमी लंबाई की चाप वृत्त के केंद्र पर कितने डिग्री माप का कोण बनाएगी ( $\pi=\frac{22}{7}$ का प्रयोग कीजिए )
यदि $\sin \theta = - \frac{1}{{\sqrt 2 }}$ तथा $\tan \theta = 1,$ तो $\theta $ कौन से चतुर्थांष में है
निम्नलिखित प्रश्नों में पाँच अन्य त्रिकोणमितीय फलनों का मान ज्ञात कीजिए
$\sec x=\frac{13}{5}, x$ चतुर्थ चतुर्थांश में स्थित है।