Prove that $\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$
It is known that $\cos A-\cos B=-2 \sin \left(\frac{A+B}{2}\right) \cdot \sin \left(\frac{A-B}{2}\right)$
$\therefore$ $L.H.S.$ $=\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)$
$=-2 \sin \left\{\frac{\left(\frac{3 \pi}{4}+x\right)+\left(\left(\frac{3 \pi}{4}-x\right)\right)}{2}\right\} \cdot \sin \left\{\frac{\left(\frac{3 \pi}{4}+x\right)-\left(\frac{3 \pi}{4}-x\right)}{2}\right\}$
$=-2 \sin \left(\frac{3 \pi}{4}\right) \sin x$
$=-2 \sin \left(\pi-\frac{\pi}{4}\right) \sin x$
$=-2 \sin \frac{\pi}{4} \sin x$
$=-2 \times \frac{1}{\sqrt{2}} \times \sin x$
$=-\sqrt{2} \sin x$
$= R . H.S.$
The value of $\cot \frac{\pi}{24}$ is :
If $\left| {\cos \,\theta \,\left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}\,} \right|\, \le k,$ then the value of $k$ is
A circular wire of radius $7\,cm$ is cut and bend again into an arc of a circle of radius $12\,cm$. The angle subtended by the arc at the centre is ......$^o$
If $\cot x=-\frac{5}{12}, x$ lies in second quadrant, find the values of other five trigonometric functions.
Prove that $\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$